West Park CE Primary School PROGRESSION THROUGH CALCULATION GUIDANCE

This policy has been developed from the White Rose Calculation Policy and Surrey Calculation Policy Updated February 2022

CALCULATION GUIDANCE: Number Recognition

Year Group	Objective	Concrete	Pictorial	Abstract
증 을 岂 un	Nominal Knowing the name Numbers 40-60 Selects the correct numeral to represent 1-5 Then 1-10 objects	Spotting numbers in the environment	Number flash cards Number tiles Magnetic Numbers Number Fans	Number formation rhymes Knowing a number 4 bus isn't the $4^{\text {th }}$ bus

CALCULATION GUIDANCE: Counting

Year Group	Objective	Concrete	Counting Cardinal Numbers Children count reliably with numbers from 1 -20	Counting cubes, bears, fingers, pegs.

CALCULATION GUIDANCE: Addition

Year Group	Objective	Concrete	Pictorial	Abstract
	One more than from a group of up to 5 objects then 10. Building to a given number to 20	Sorting objects into 2 groups then combining 2 groups of objects e.g. cubes, bears, fingers, pegs. (Total, all, together)	IWB resources tesiboard Addition stories	Using symbols, numerals and their names $2+1=3$
	Using objects to add two single digit numbers	Sorting objects into 2 groups then combining 2 groups of objects e.g. cubes, bears, fingers, pegs. (Total, all, together)	IWB resources tesiboard Addition stories	Using symbols, numerals and their names
	Count on	Number line and counters Board Games	Number line without counters	Put in your head and count on
	Solve Problems	Role Play	Picture Cards	Is it a sensible answer/ Simple estimating

	Adding 3 single digit numbers	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder
	Column Method without regrouping	Add together the ones first, then add the tens. Use Base 10 blocks first before moving onto place value counters. $24+15=$ $44+15=$	After physically using the base 10 blocks and place value counters, children can draw the counters to help them solve additions	$\begin{array}{r} 24+15=39 \\ 24 \\ +15 \\ \hline 39 \\ \hline \end{array}$

$\begin{aligned} & N \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	Column method with regrouping	Make both numbers on a place value grid. Add up the ones and exchange 10 ones for 1 ten.	Using place value counters, children can draw the counters to help them solve additions.	$\begin{aligned} & \begin{array}{l} 40+9 \\ \underline{20+3} \\ \underline{60+12} \end{array}=72 \\ & 49 \\ & \frac{+23}{\frac{72}{1}} \end{aligned}$

CALCULATION GUIDANCE: Subtraction

Year Group	Objective	Concrete	Pictorial	Abstract
	'One less than' from a group of up to 5 objects then 10 , building to a given number to 20	Practical moving objects from a larger group e.g. eating fruit	Crossing out pictures. IWB resources e.g. tesiboard subtraction stories.	Using symbols, numerals and their names.
	Using objects to subtract 2 single digit numbers (fewer)	Practical moving objects from a larger group e.g. eating fruit	Crossing out pictures. IWB resources e.g. tesiboard subtraction stories.	Using symbols, numerals and their names. $3-1=2$

$\begin{aligned} & \stackrel{ᄃ}{0} \\ & \stackrel{\rightharpoonup}{U} \\ & \ddot{U} \\ & \ddot{\sim} \end{aligned}$	Count back	Number line and counter Specialist subtraction boards	Number line without counters.	Pu it in your head and count back.
	Solve problems	Role play with objects e.g. Little Red Riding Hood dropping objects from her basket	Picture Cards	Is it a sensible answer? Simple Estimating. Numicon
$\begin{aligned} & \stackrel{\rightharpoonup}{\overline{1}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \end{aligned}$	Ones taking away	Use physical objects, counters cubes etc. to show how objects can be taken away. $4-2=2$	Cross out drawn objects to show what has been taken away. $4-2=2$	$4-2=2$

	Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4=9$	Count back on a number line or number track. Start at the bigger number and count back the smaller number, showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
$\begin{aligned} & \stackrel{-}{1} \\ & \stackrel{1}{\pi} \\ & \underset{\sim}{\sim} \end{aligned}$	Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 8 goldfish. Helen has 3 goldfish. Find the difference between the number of goldfish the girls have.

CALCULATION GUIDANCE: Multiplication

Year Group	Objective	Concrete	Pictorial	Abstract
	Solve problems including doubling	Multilink Counting bears Pegs	Number pictures Fingers Counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s with numicon	Using symbols, numerals and their names $\begin{aligned} & 2+2=4 \\ & 4+4=8 \end{aligned}$ Counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Rhymes and stories

$\begin{aligned} & \stackrel{N}{\lambda} \\ & \frac{1}{\overleftarrow{D}} \\ & \underset{\sim}{\sim} \end{aligned}$	Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? $2+2+2=6$	Write addition sentences to describe objects and pictures. $2+2+2=6$

	Arrays showing commutative multiplication	Create arrays using counters/cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

	Grid method	Show the link with arrays to first introduce the grid method. 4 rows of 10 4 rows of 3 Move on to using Base 10 to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Fill each row with 126. Add up each column, starting with the ones making any exchanges needed.	Children can represent the work they have done with place value counters in a way that they understand. They can draw counters, using colours to show different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=24.5$ Move forward, multiply by a 2 digit number showing the different rows within the grid method. $\begin{array}{r} 35 \\ \times \quad 7 \\ \hline \frac{245}{3} \end{array}$

$\begin{gathered} \underset{\sim}{\underset{\sim}{\omega}} \\ \vdots \\ \stackrel{\rightharpoonup}{\infty} \end{gathered}$	Expanded method	Show the link with arrays to first introduce the expanded method.		$\begin{array}{\|ll} & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \\ 0 & \\ 0 & \\ 0 & 30 \end{array}$		Start with long multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{aligned} & 18 \\ & \times 13 \\ & \hline 24(3 \times 8) \\ & 30(3 \times 10)) \\ & 80(10 \times 8) \\ & \frac{100}{234}(10 \times 10) \end{aligned}$

CALCULATION GUIDANCE: Division

Year Group	Objective	Concrete	Abstract	
	Sharing	I have 8 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities.	Share 8 buns between two people. $8 \div 2=4$

	Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. E.g. $\begin{array}{ll} 15 \div 3=15 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \\ & 15 \div 5=3 \\ & 15 \div 3=15 \end{aligned}$

		We exchange this ten for 10 ones and then share the ones equally among groups. We look at how many are in each group.		
$\begin{aligned} & \bullet \\ & \stackrel{0}{\omega} \\ & \frac{1}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$	Division with remainders	$14 \div 3=$ Divide objects between groups and see how much is left over.	Jump forward in equal jumps on a number line then see how many more you need to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. revelinder 2	Complete written divisions and show the remainder using r. List table facts to support division e.g. $5,10,15,20,25$

